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Abstract 
 
Longitudinal quantification of brain changes due to development, aging or disease plays an 
important role in the filed of personalized-medicine applications. However, due to the 
temporal variability in shape and different imaging equipment and parameters, estimating 
anatomical changes in longitudinal studies is significantly challenging. In this paper, a 
longitudinal Magnetic Resonance(MR) brain image segmentation algorithm proposed by 
combining intensity information and anisotropic smoothness term which contain a spatial 
smoothness constraint and longitudinal consistent constraint into a variational framework. The 
minimization of the proposed energy functional is strictly and effectively derived from a fast 
optimization algorithm. A large number of experimental results show that the proposed 
method can guarantee segmentation accuracy and longitudinal consistency in both simulated 
and real longitudinal MR brain images for analysis of anatomical changes over time. 
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1. Introduction 

Longitudinal quantification of anatomical changes provides a unique opportunity for human 
brain study and analysis in many clinical scenarios [1-3]. Estimation of anatomy changes are 
essential in clinical applications for disease onset prediction, disease progression evaluation, 
recovery and treatment efficacy quantization and common patterns of growth or atrophy 
determination [4-6]. In these studies, consistent tissue segmentation on Magnetic Resonance 
(MR) images plays an indispensible role for measuring subject changes with time [7-9]. On 
series images segmentation, longitudinal stability is critical since the quantification accuracy 
will be affected by measurement error [10]. However, due to different imaging parameters, 
different scanner calibration, and joint processing of multiple 3-D images, existing 3-D 
segmentation algorithms may not be able to provide adequate longitudinal stability. In the past 
two decades, lots of image techniques have been used for image segmentation, like 
thresholding method [11], the region growing [12], statistical models [13, 14], clustering [15, 
16] and active contour models [17, 18]. However, these intensity-based methods cannot be 
directly applied for MR image segmentation. A commonly encountered problem is the 
intensity inhomogeneity or bias field of brain MR image [19]. The intensity inhomogeneity 
due to the device limitations and patient-induced electrodynamics interactions can overlap the 
strength range of different organizations. So the voxels in different tissues can not be 
distinguished by intensity. To solve this problem, one kind of the methods which integrate the 
bias field with segmentation model was widely studied [18, 20-24]. In these methods, the tasks 
of bias field correction and segmentation are merged and mutually benefical to yield better 
results. Another tissue segmentation accuracy impact is the noise. The heavy noise in the 
image can seriously affect the spatial consistent of tissue segmentation. Therefore, a spatial 
constraint was widely imposed to the energy function for spatial smooth segmentation results 
[21-23]. However, these existing brain MR image segmentation methods are designed for 3D 
brain image segmentation at single time point even though longitudinal scans are available. 
The segmentation results of these methods might result in inconsistent tissue variation in 
temporal dimension when they are applied to a series of scans of the same subject.  In the 
previous works[10], a time-consistent segmentation algorithm for longitudinal images 
proposed by Xue et al., using iterated registration and segmentation. Whereas, this method 
which uses the local clustering means in the spatiotemporal is extremely sensitive to the 
initialization. The convergence of algorithm and the parameters, such as number of iterations, 
were also not analyzed in this paper. Furthermore, the framework iteratively performed the 
image registration and segmentation is very complicated and time consuming.  

In this paper, we propose a novel longitudinally guided variational model for consistent 
tissue segmentation of longitudinal brain MR images. In our model, the data fitting term and 
the anisotropic smoothness term are combined together to generate a variational energy 
function. The data fitting term in our variational model is the longitudinal version of 3D 
intensity fitting model that incorporates the bias field into the segmentation model to deal with 
intensity inhomogeneities in the MR data. Our anisotropic smoothness term is a linear 
combination of the spatial and temporal consistent constrain terms. These two consistent 
constrain terms are generated by the total variation (TV) regularization which can 
simultaneously preserve the structural information whilst smooth away the noises in flat 
regions. With this anisotropic smoothness term, we can overcome the influence of the noise 
and keep the longitudinal consistent variation of the tissue segmentation results. To minimize 
the proposed energy function, a fast optimization algorithm is applied to quickly obtain the 
minimization results. Experimental results on real and virtual data show that our longitudinal 
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segmentation results can ensure segmentation accuracy and longitudinal consistency for 
analysis of anatomical changes over time. 

2. Background and Preprocess 

2.1 3D brain image segmentation and bias correction method  
Most frequently, the intensity inhomogeneity is assumed to be a multiplicative field as it is 
consistent with the inhomogeneous sensitivity of the reception coil. According to this 
assumption, the acquired image I(x) can be expressed as:   
                                              𝐼𝐼(𝑥𝑥) = 𝑏𝑏(𝑥𝑥)𝐽𝐽(𝑥𝑥) + 𝑛𝑛(𝑥𝑥) ,                                                                (1) 
where 𝑏𝑏(𝑥𝑥)  is the bias field, 𝐽𝐽(𝑥𝑥)  is the inhomogeneity-free image, 𝑛𝑛(𝑥𝑥)  is the additive noise 
respectively. Noise is usually ignored and logarithmic transform is performed on both sides, 
in order to simplify the calculation: 
                                          log(I) = log(bJ) = log(J) + log(b)                                            (2) 

We name log(I)  with Ǐ, log(J)  with J̌  and  log(b)  with B� , respectively. Therefore the 
equation (2) is writen as Ǐ = B� + J̌ .Based on this multiplicative model, the J(x) can be 
approximated as a constant 𝑐𝑐𝑖𝑖  [22-25].  And a linear combination of   basis 
functionsg1, g2, … , gm.is helpful to the bias field 𝑏𝑏(𝑥𝑥). 

According to these two assumptions, an intensity fitting model for 3-D brain 
segmentation and bias correction as follows: E = ∑ �Ǐ(x) −ωTg(x) − ci�

2dxN
i=1 , where𝜔𝜔 =

(𝜔𝜔1,𝜔𝜔2,⋯ ,𝜔𝜔𝑚𝑚)𝑇𝑇are the combination coefficients, and g = (g1, g21, … , gm)T are the basis 
functions.  

This method can obtain the accurate segmentation results and smoothness bias field of 3-
D MR image. However, without considering the spatial and temporal consistent of each tissue, 
this method is sensitive to the noise, and only can be applied for 3-D image segmentation. In 
this subsection, we extend this model as our data-fitting term and add to the spatial and 
temporal smoothness constrain terms.  

2.2 Preprocess 
A set of 3-D brain MR images I(t) 𝑡𝑡 ∈ 𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2,⋯ , 𝑡𝑡𝑛𝑛} scanned from the same patient at 
different time point constitute the longitudinal brain MR image I in this article. Due to different 
imaging parameters, different imaging position and different scanner calibration of each 3-D 
brain MR image, we need to do some preprocesses for consistent 4-D brain segmentation. First, 
we use the rigidly registration method [26, 27] to integrate the subsequent image features into 
the first image features. Then, a robust skull-stripping method [28] was used to remove the 
non-brain tissue parts from the image. At last, the image intensities were globally normalized 
that the intensity interval of each image is much closer.  

3. The longitudinal brain MR image segmentation model 
In this section, a novel longitudinally guided variational model is proposed for consistent tissue 
segmentation of longitudinal brain MR images. Our global energy function is built by the data 
fitting term and the smoothness term. The data fitting term is generated by extending the 
intensity fitting term in [6] to longitudinal version. Also, the anisotropic smoothness term is 
the linear combination of two consistent constrain terms in spatial dimension and time 
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dimension. With this anisotropic smoothness term, our project is noise-free and can keep the 
longitudinal consistent variation of the tissue segmentation results. 

3.1 Data-fitting term 
To simultaneous estimate the bias field and segment the longitudinal brain MR image, we 
adapted  (2) to longitudinal version as our data-fitting term: 

Edata�B�, c� = ∑ ∬ �Ǐ(x, t) − B�(x, t) − ci(t)�
2

dxdtΩi
4
i=1                              (3) 

where B�(x, t) = ω(t)Tg(x) and ci(t) is the bias field value of pixel  and the mean value of i-
th class in time 𝑡𝑡, c = (c1, c2, c3, c4)T is the vector of mean values in different brain tissue. By 
using two fuzzy membership functions 𝑢𝑢1,𝑢𝑢2 to generate four regions, we rewrite the (3) as 
follows: 

(ω, c, u1, u2) = ∑ ∬�Ǐ(x, t) −ω(t)Tg(x) − ci(t)�
2

Mi(x, t)dxdt4
i=1               (4) 

where 𝑀𝑀1 = 𝑢𝑢1𝑢𝑢2,𝑀𝑀2 = 𝑢𝑢1(1− 𝑢𝑢2),𝑀𝑀3 = (1 − 𝑢𝑢1)𝑢𝑢2,𝑀𝑀4 = (1 − 𝑢𝑢1)(1− 𝑢𝑢2)  . 
There are three advantages of this data-fitting term: (1) the bias field and the means in each 
time point are independent which can simplify the energy minimization for longitudinal image 
segmentation; (2) this data-fitting term can estimate the bias field and segment the brain tissue 
simultaneously, the estimated bias field can be used for bias correction; (3) the energy of each 
variables is convex . 

3.2 Anisotropic smoothness term 
Anatomical structures are consistent in spatial and temporal dimension throughout the 
developmental stages [3]. Therefore, we propose an anisotropic smoothness term to better 
guide the segmentation. Our anisotropic smoothness term can be written as follows: 

                                                𝐸𝐸𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎 + 𝛽𝛽 ⋅ 𝐸𝐸𝑠𝑠𝑡𝑡𝑚𝑚𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑎𝑎                                          (5) 
where 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎and 𝐸𝐸𝑠𝑠𝑡𝑡𝑚𝑚𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑎𝑎are spatial and temporal consistent terms respectively. 𝛽𝛽 is 

a parameter to control the balance of these two smooth terms. The characteristic of this smooth 
constrain term is that the whole smooth term is an anisotropic problem. It is very convenient 
to adjust the contribution of the temporal smooth term to strengthen/weaken the temporal 
smooth constrain according to the different purpose. 

The spatial and temporal constraint term in this paper are generated by total variation (TV) 
regularization [29]. Total variation method, which is widely used in image processing, can  
effectively maintain edges whilst eliminating noise in flat regions, even in case of low signal-
to-noise ratios.  

Using total variation regularization to generate our spatial and longitudinal regulation 
term, our method is able to ensure the smoothness segmentation results both in spatial and 
temporal flat regions and keep the anatomical structures very well. According to this analysis, 
the spatial and temporal constraint terms can be written as follows: 

 
 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎(𝑢𝑢1,𝑢𝑢2) = ∑ ∬|𝛻𝛻𝑢𝑢𝑖𝑖(𝑥𝑥, 𝑡𝑡)|𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡2

𝑖𝑖=1                                                                               (6) 
𝐸𝐸𝑠𝑠𝑡𝑡𝑚𝑚𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑎𝑎(𝑢𝑢1,𝑢𝑢2) = ∑ �𝑑𝑑𝑠𝑠�𝑢𝑢𝑖𝑖(𝑥𝑥, 𝑡𝑡)��𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡2

𝑖𝑖=1                                                                             (7) 
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3.3 The unified energy function for longitudinal brain tissue segmentation 
According to the analysis above, we can define the 4-D brain MR image segmentation energy 
function, which combines data fitting term and spatial-temporal smooth constraint term, as 

E(ω, c, u1, u2) = 𝛼𝛼∑ ∬�Ǐ(x, t) −ω(t)Tg(x) − ci(t)�
2

Mi(x, t)dxdt4
i=1                                                     

                         +𝛽𝛽∑ ∬�𝑑𝑑𝑠𝑠�𝑢𝑢𝑖𝑖(𝑥𝑥, 𝑡𝑡)��𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡2
𝑖𝑖=1 + ∑ ∬|𝛻𝛻𝑢𝑢𝑖𝑖(𝑥𝑥, 𝑡𝑡)|𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡2

𝑖𝑖=1                             (8) 
where 𝛼𝛼 is the regulating parameter to control the contribution of data fitting term. The 

three terms in our energy function reflect the intensity variations, the spatial constrain and the 
temporal constraint respectively. By minimizing this energy functional, we can obtain accurate, 
spatial and temporal consistent segmentation results. 

4. Energy minimization 
Every variable of energy function E(ω, c, u1, u2) is convex . The energy of each variable ought 
to be minimized in virtue of interleaved minimization which is oprated iteratively. The 
minimization with respect to𝜔𝜔  and 𝑐𝑐  can be easy solved by gradient descent algorithm. 
According to  (4), the value of 𝑏𝑏 and c in each time point is mutually independent, therefore 
we can fix tand solve the minimization with respect to ω(t)  and c(t)  respectively. 

For fixed𝑢𝑢1(𝑡𝑡),𝑢𝑢2(𝑡𝑡) and 𝑐𝑐(𝑡𝑡) , the optimization method in [23] is used to minimize 
𝐸𝐸(𝜔𝜔, 𝑐𝑐,𝑢𝑢1,𝑢𝑢2)  with respect to ω. The expression of ω(t)  is written as: 

𝜔𝜔(𝑡𝑡) = (𝐴𝐴(𝑡𝑡))−1𝑣𝑣(𝑡𝑡)                                               (9) 
where A(t) = ∑ ∫ g(x)gT4

i=1 (x)Mi(x, t)dx  and v(t) = ∑ ∫�Ǐ(x) −4
i=1

ci(t)� g(x)Mi(x, t)dx. Keeping 𝑢𝑢1(𝑡𝑡),𝑢𝑢2(𝑡𝑡) and ω(t)  fixed and setting the partial derivative 
of E(ω, c, u1, u2)  with respect to ci(t)  equal to zero, the equation to update the ci(t)  can be 
given by: 

    ci =
∫�Ǐ(x,t)−B(x,t)�Mi(x,t)dx

∫Mi(x,t)dx
                                               (10) 

The difficulty of the energy minimization is the minimization respect with𝑢𝑢1,𝑢𝑢2 due to 
the TV term. Because of the non-differentiability and non-linearity of the TV term, this 
problem is simple in form but computationally challenging. To solve this problem, we apply 
the Split Bregman algorithm to fast and robust minimizes the energy respect to u1andu2. 
Compared with other methods, the Split Bregman method is independent of regularization, 
continuation, or the enforcement of inequality constraints, which earns the leading edge for it. 
When it comes L1 regularized issues, it takes little time for the proposed method to converge 
[18, 25, 30, 31].  

Using u1as an example, we fixed c, b and 𝑢𝑢2, the energy function can be rewritten as 
follows: 
                                                       𝑚𝑚𝑚𝑚𝑛𝑛

𝑢𝑢1∈[0,1]
|𝛻𝛻𝑢𝑢1| + 𝛽𝛽|𝑑𝑑𝑠𝑠(𝑢𝑢1)| + 𝛼𝛼⟨𝑟𝑟1,𝑢𝑢1⟩                        (11) 

where 𝑟𝑟1 = (𝑒𝑒1 − 𝑒𝑒3)𝑢𝑢2 + (𝑒𝑒2 − 𝑒𝑒4)(1− 𝑢𝑢2) and ei(x, t) = (Ǐ(x, t) − B�(x, t) − cI (t))2 . 
Due to containing two L1 regularized terms, we introduce two auxiliary variables 𝑑𝑑1����⃗ ← 𝛻𝛻𝑢𝑢1 
and 𝑝𝑝1 ← 𝑑𝑑𝑠𝑠𝑢𝑢1 and apply Bregman iteration [31] to strictly enforce the constraint variables 
d1����⃗ = ∇u1 and p1 = dtu1. The resulting optimization problem is given by: 
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(𝑢𝑢1𝑛𝑛+1,𝑑𝑑1𝑛𝑛+1,𝑝𝑝1𝑛𝑛+1) = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑚𝑚𝑛𝑛
𝑢𝑢1∈[0,1],𝑑𝑑1�����⃗ ,𝑠𝑠1

�𝑑𝑑1����⃗ �+ 𝛽𝛽|𝑝𝑝1| + 𝛼𝛼⟨𝑟𝑟1,𝑢𝑢1⟩ + 𝜇𝜇
2
�𝑑𝑑1����⃗ − 𝛻𝛻𝑢𝑢1 − 𝑏𝑏1���⃗

𝑛𝑛
�
2

+

𝜇𝜇𝜇𝜇
2
‖𝑝𝑝1 − 𝑑𝑑𝑠𝑠(𝑢𝑢1) − 𝑞𝑞1𝑛𝑛‖2                                                                                                                               (12) 

𝑏𝑏1���⃗
𝑛𝑛+1

= 𝑏𝑏1���⃗
𝑛𝑛

+ 𝛻𝛻𝑢𝑢1𝑛𝑛 − 𝑑𝑑1����⃗
𝑛𝑛

                                                                                                      (13) 
𝑞𝑞1𝑛𝑛+1 = 𝑞𝑞1𝑛𝑛 + 𝑑𝑑𝑠𝑠(𝑢𝑢1𝑛𝑛) − 𝑝𝑝1𝑛𝑛                                                                                                       (14) 
The Euler-Lagrange equation of (12) with respect to 𝑢𝑢1 is given by: 
𝛥𝛥𝑢𝑢1 + 𝛽𝛽 ⋅ 𝑑𝑑𝑠𝑠𝑠𝑠𝑢𝑢1 = 𝛼𝛼

𝜇𝜇
𝑟𝑟1 + 𝛻𝛻 ⋅ (𝑑𝑑1����⃗ − 𝑏𝑏1���⃗ ) + 𝛽𝛽(𝑑𝑑𝑠𝑠(𝑝𝑝1 − 𝑞𝑞1))                                                    (15) 

A fast approximated solution of (15) is provided by Gauss-Seidel iterative scheme and 
projection algorithm: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑎𝑎𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑠𝑠

𝑛𝑛 = 𝑑𝑑1𝑖𝑖−1,𝑗𝑗,𝑘𝑘,𝑡𝑡
𝑥𝑥,𝑛𝑛 − 𝑑𝑑1𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑥𝑥,𝑛𝑛 − 𝑏𝑏1𝑖𝑖−1,𝑗𝑗,𝑘𝑘,𝑡𝑡
𝑥𝑥,𝑛𝑛 + 𝑏𝑏1𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑥𝑥,𝑛𝑛 + 𝑑𝑑1𝑖𝑖,𝑗𝑗−1,𝑘𝑘,𝑡𝑡
𝑦𝑦,𝑛𝑛 − 𝑑𝑑1𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑦𝑦,𝑛𝑛

−𝑏𝑏1𝑖𝑖,𝑗𝑗−1,𝑘𝑘,𝑡𝑡
𝑦𝑦,𝑛𝑛 + 𝑏𝑏1𝑖𝑖,𝑗𝑗−1,𝑘𝑘,𝑡𝑡

𝑦𝑦,𝑛𝑛 + 𝑑𝑑1𝑖𝑖,𝑗𝑗,𝑘𝑘−1,𝑡𝑡
𝑧𝑧,𝑛𝑛 − 𝑑𝑑1𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑧𝑧,𝑛𝑛 − 𝑏𝑏1𝑖𝑖,𝑗𝑗,𝑘𝑘−1,𝑡𝑡
𝑧𝑧,𝑛𝑛 + 𝑏𝑏1𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑧𝑧,𝑛𝑛

ℎ𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑠𝑠
𝑛𝑛 = 𝑝𝑝1,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑠𝑠−1

𝑠𝑠,𝑛𝑛 − 𝑝𝑝1,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑠𝑠
𝑠𝑠,𝑛𝑛 − 𝑞𝑞1,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑠𝑠−1

𝑠𝑠,𝑛𝑛 + 𝑞𝑞1,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑠𝑠
𝑠𝑠,𝑛𝑛

𝑙𝑙𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑠𝑠
𝑛𝑛 = 1

6+2𝜇𝜇
(𝑢𝑢1𝑖𝑖−1,𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑛𝑛 + 𝑢𝑢1𝑖𝑖+1,𝑗𝑗,𝑘𝑘,𝑡𝑡
𝑛𝑛 + 𝑢𝑢1𝑖𝑖,𝑗𝑗−1,𝑘𝑘,𝑡𝑡

𝑛𝑛 + 𝑢𝑢1𝑖𝑖,𝑗𝑗+1,𝑘𝑘,𝑡𝑡
𝑛𝑛 + 𝑢𝑢1𝑖𝑖,𝑗𝑗,𝑘𝑘−1,𝑡𝑡

𝑛𝑛 + 𝑢𝑢1𝑖𝑖,𝑗𝑗,𝑘𝑘+1,𝑡𝑡
𝑛𝑛

+2𝛽𝛽(𝑢𝑢1𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡−1
𝑛𝑛 + 𝑢𝑢1𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡+1

𝑛𝑛 ) − 𝛼𝛼
𝜇𝜇
𝑟𝑟1𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 + 𝑎𝑎𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑠𝑠

𝑛𝑛 + 2𝛽𝛽ℎ𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑠𝑠
𝑛𝑛 )

𝑢𝑢𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑠𝑠
𝑛𝑛+1 = 𝑚𝑚𝑎𝑎𝑥𝑥{𝑚𝑚𝑚𝑚𝑛𝑛{ 𝑙𝑙𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑠𝑠

𝑛𝑛 , 1}, 0}

               

(16) 
Minimization with respect to d1����⃗  and p1 is performed using the following formula: 
𝑑𝑑1����⃗

𝑛𝑛+1
= 𝑠𝑠ℎ𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟(𝑏𝑏1���⃗

𝑛𝑛
+ 𝛻𝛻𝑢𝑢1𝑛𝑛, 1

𝜇𝜇
)                                                                                              (17) 

𝑝𝑝1𝑛𝑛+1 = 𝑠𝑠ℎ𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟(𝑞𝑞1𝑛𝑛 + 𝑑𝑑𝑠𝑠(𝑢𝑢1𝑛𝑛), 1
𝜇𝜇

) .                                                                                           (18) 
The 𝑢𝑢2also can be solved by using the same optimization strategy. The whole iterative 

algorithm of global energy minimization is given as follows: 
 

Algorithm 

Initializing 0 0
1 2,u u ； 

For 1:k iternum=  

Updating ( )
i

kc t and 1
kr ，

2

kr ； 

Update 1
ku and 2

ku ； 

Updating ( )k tω ； 

if  1k kE E total−− <  

break； 

end 

End 
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5. Experiments and Validation 
In this section, we conduct a large number of experiments on simulated and clinical MR 

brain images to verify the performance of longitudinal image segmentation method. 
Quantitative comparison results show the superiority of the proposed method.  

5.1 Simulated Data without longitudinal deformation 
We generate synthetic image series without longitudinal deformation. Fig. 1 shows three brain 
images. Each of them has same white matter, gray matter and cerebrospinal fluid but different 
bias field, intensity contrast and noise. The second row shows the 3-D segmentation results of 
parametric method [22]. The fourth and fifth images in second row show the difference of two 
adjacent segmentation results. Due to the noise and low intensity contrast, the segmentation 
results obtained by [22] are big changes and cannot maintain longitudinal smooth. The first 
three images in third row demonstrate the segmentation results obtained by the proposed 
method.  The last two images in third row show the difference of the adjacent segmentation 
results obtained by our method. With the penalty of TV norm in both longitudinal and spatial 
dimensions, the results are longitudinally smooth, and the volume change of adjacent results 
is more stable.  
 

 
Fig. 1. Examples of the segmentation results for simulated longitudinal images without longitudinal 
deformation. Top: simulated serial images, middle: the results obtained by 3-D parametric method, 

bottom: results obtained by the proposed method. 

5.2 Simulated Data with longitudinal deformation 
The ability of proposed method is evaluated for simulated image series with deformations 
segmentation in this chapter. To simulate the longitudinal deformation, five images were 
simulated for atrophy and intensity/contrast decrease. The images in first row show the 
simulated MR brain image with longitudinal deformation. The second and third rows show 
the segmentation results obtained by the 3-D method and our method, respectively. The 3-D 
method without longitudinal regulation cannot obtain accurate results. Compared to 3-D 
method, the proposed method considering longitudinal and spatial regulations is able to 
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segment the images with longitudinal deformation. Fig. 2 (a) and Fig. 2(b) show the number 
of White Matter(WM) and Gray Matter (GM) pixels in each time point obtained by 3-D 
method and the proposed method, respectively. These two figures demonstrate that the 
proposed method with longitudinal and spatial regulations can obtain longitudinally consistent 
segmentation results.   
 

 
Fig. 2. Comparison of temporal consistency of GM and WM obtained by 3-D parametric method and 

the proposed method, respectively. Left: the number of WM and GM pixels in each time point 
segmented by 3-D parametric method, right: the number of WM and GM pixels in each time point 

segmented by the proposed method. 
 

5.3 Clinical longitudinal MR brain images 
In this experiment, our method is used to segment 6 sets of clinical longitudinal MR brain 
images given by OASIS database (http://www.oasis-brains.org/). Images in each set of the 
data are obtained from a same health old adult during a period of four consecutive years. The 
image in each time point is 3-D T1 MR image, and its size is 256×256×128. 

Fig. 3 shows a typical the segmentation result of 3-D parametric method and the proposed 
method respectively. The first row shows four longitudinal images of a same object. The 
second and the third row show the segmentation results and the difference of two neighboring 
point data segmentation results from 3-D parametric method and the proposed method, 
respectively. The fourth and last row show the corresponding results obtained by our method. 
From these results, we can see that the changes of longitudinal images not only located in 

http://www.oasis-brains.org/
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atrophy regions but also other longitudinal smooth regions. Compared with 3-D segmentation 
results, the most changes of our segmentation results located in atrophy regions and the results 
of other longitudinal smooth regions are longitudinal smoothness. This demonstrates that the 
proposed method is a promising tool for longitudinal consist segmentation on longitudinal 
brain MR images. 

 

 
Fig. 3. Comparison of temporal consistency of GM and WM in real clinical data obtained by 3-D 

parametric method and the proposed method, respectively. 
 

In order to quantitatively analyze the segmentation results, the numbers of WM and GM 
pixels of entire brain are calculated and shown in Fig. 4. From the figures, as we can see, the 
curves representing the results are fairly smooth. According to our calculation results, the 
pixels of GM and WM gradually decrease over time. Figure 5 shows the mean and Standard 
Deviation (SD) of segmentation differences for 8 subjects at different time points. The smaller 
the SD value is, the smoother the longitudinal change is and the better the segmentation effect 
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is. It can be seen that the changes obtained by our method are more stable than those using 3-
D parametric method. 

 

 

 
 

Fig. 4. GM and WM volumes in entire brain. Left: results of 3-D segmentation method. Wright: 
results of our longitudinal segmentation method. 
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Fig. 5. The average and standard deviation (SD) of segmentation difference calculated at different 

time points from 6 subjects. Left: results of 3-D segmentation method. Wright: results of our 
longitudinal segmentation method. 

6. Conclusion and Discussion 
In this paper, we proposed a longitudinal MR brain image segmentation algorithm by 
combining data term, spatial and longitudinal smoothness constraints terms. The data term 
combining the bias field, membership functions and the clustering centers reflects the 
characteristic of the image in each time point. The spatial and longitudinal smooth constraint 
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terms are used for consistent results. The advantage of using total variation norm for 
longitudinal smooth term is that it is able to remove the noise in the flat regions and keep the 
anatomical structures very well.  

There are two parameters in our energy function.  We select these two parameters 
according to the experience. The value of α can be chose in [0.03, 0.08]. It can be shown that 
the spatial smoothing segmentation will be decreased with α. Analogously, the value of β can 
be chose in [0, 10], and the longitudinal smoothing segmentation will be increased with β.  If 
we use β=0, our energy function is same as that of 3-D segmentation method. In this respect, 
our energy function is a generalized form for 3-D and 4-D brain tissue segmentation. In this 
paper, we use α=0.05,  β=6. 

In conclusion, we proposed a longitudinal brain tissue segmentation method which yields 
spatially adaptive and longitudinal consistent segmentation results. The advantage of our 
method is that it is able to yields spatially and longitudinally consistent segmentation results 
while adapting to the longitudinal changes of anatomical structures. Experimental results on 
simulated and real longitudinal MR brain images show that our longitudinal segmentation 
results can allow both segmentation accuracy and longitudinal consistency for analysis of 
anatomical changes over time. 
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